هما کاشفی

AlexNet: معماری که CNNها را به چالش کشید

AlexNet:معماری که CNNها را به چالش کشید

سال‌ها پیش، ما هنوز از دیتاست‌های کوچکی مثل CIFAR, NORB استفاده می‌کردیم که متشکل از ده‌ها هزار تصویر بودند. این دیتاست‌ها برای مدل‌های یادگیری ماشین مناسب بودند تا تسک‌های تشخیص ساده را یاد بگیرند. با این حال، زندگی واقعی هرگز…
هنر و هوش مصنوعی

هنر و هوش مصنوعی

ما به دلایل متعددی به هنر روی می آوریم: برای بیان عاطفه یا احساس، برای یادآوری رویدادها و احساسات گذشته، برای ارتباط برقرار کردن و برای تحصیل. به طور خلاصه، هنر چیزی است که خلق می‌کنیم تا بدانیم چه کسی…
مفهوم کانولوشن در cnn

مفهوم کانولوشن در CNN

اگر بخواهیم تفاوت اصلی لایه‌های کانولوشن را با لایه‌های معمول شبکه‌های عصبی بیان کنیم، می‌توانیم بگوییم لایه‌های Dense الگوهای global را در فضای ویژگی ورودی خود یاد می‌گیرند در حالیکه لایه‌های کانولوشن الگوهای local را یاد می‌گیرند. برای مثال یک…
درک شبکه‌های عصبی بازگشتی و LSTM

درک شبکه‌های عصبی بازگشتی و LSTM

اگر تابحال از Apple’s Siri و Google voice search یا Google Translate استفاده کرده‌اید، باید بدانید که این اپلیکیشن‌ها از شبکه‌های عصبی بازگشتی (RNN) استفاده می‌کنند که جدیدترین الگوریتم‌ها برای داده‌های توالی هستند. RNN اولین الگوریتمی است که به دلیل…
تکنیکهای آموزش شبکه های عصبی بزرگ

تکنیکهای آموزش شبکه های عصبی بزرگ

ممکن است شبکه‌های عصبی عظیم، گزینه‌ی مناسبی برای پروژه‌ی شما باشند اما نگران روند آموزش آنها باشید. شبکه‌های عصبی بزرگ، مرکز اصلی پیشرفت‌های اخیر در هوش مصنوعی هستند، اما آموزش این شبکه‌ها چالش پژوهشی و مهندسی دشواری است که مستلزم…
مطالعات فرسایشی یاAblation studies در هوش مصنوعی

مطالعات فرسایشی یا Ablation studies در هوش مصنوعی

مطالعات فرسایشی به طور سیستماتیکی سعی می‌کنند که بخش‌هایی از یک سیستم را حذف کنند، تا شناسایی کنند که عملکرد اصلی مدل دقیقاً از کجا می‌آید. اگر شما بدانید که X+Y+Z نتایج خوبی می‌دهد، X, Y, Z, X+Y, X+Z و…
تحلیل سه مدل شبکه عصبی در یادگیری عمیق: ANN، CNN و RNN

تحلیل سه مدل شبکه عصبی در یادگیری عمیق: ANN، CNN و RNN

شبکه‌های عصبی چه قابلیت‌هایی دارند که الگوریتم‌های یادگیری ماشین فاقد آنها هستند؟ از طرف دیگر، با وجود آنکه شبکه‌های عصبی به حجم زیادی داده نیاز دارند، آیا استفاده از این شبکه‌ها، ارزشش را دارد؟! در این پست، سه مدل شبکه…

الگوریتم ensemble RCSSP برای طبقه‌بندی سیگنال EEG تصور حرکتی

الگوریتم CSP (فیلتر مکانی مشترک) روشی برای طبقه بندی سیگنال EEG مبتنی بر تصور حرکتی است. این الگوریتم با وجود کارایی خوبی که نسبت به سایر روش‌های استخراج ویژگی دارد اما با ایراداتی چون احتمال بالای overfitting روبروست که می‌تواند…
طبقه بندی سیگنال EEG تصور حرکتی با شبکه CNN

طبقه بندی سیگنال EEG تصور حرکتی با شبکه CNN

در مقاله‌ای جدید ارائه شده توسط آقای Xiangmin Lun  و همکارانشان (2020) یک شبکه عصبی کانولوشنی (CNN)، سیگنال EEG تصور حرکتی خام را کلاسبندی می‌کند بدون اینکه هیچ گونه پیش پردازشی روی دیتای EEG انجام شود و یا عملیات استخراج…
کاربرد شبکه‌های عصبی کانولوشنی در رادیولوژی

کاربرد شبکه‌های عصبی کانولوشنی در رادیولوژی

شبکه عصبی کانولوشنی (CNN) یک کلاس از شبکه‌های عصبی مصنوعی است که در تسک‌های مختلف بینایی ماشین مورد استفاده قرار می‌گیرد و همچنین توجهات را در سایر حوزه‌ها از جمله رادیولوژی به خود جلب کرده است. CNN با این هدف…
10 IDE برتر برای برنامه نویسی پایتون

10 IDE برتر برای برنامه نویسی پایتون

IDE که مخفف Integrated Development Environment است یک برنامه‌ی نرم افزاری است که محیطی را برای برنامه نویسان فراهم می‌کند تا بتوانند کدهای خود را توسعه دهند. اکثر اوقات IDE شامل یک ویرایشگر کد (Code Editor)، ابزارهای خودکارسازی (Automation Tools)…
شبکه Resnet

شبکه عصبی Resnet

در طی چند سال اخیر، با معرفی شبکه‌های عصبی کانولوشنی عمیق، بسیاری از مسائل حوزه‌ی طبقه بندی تصویر و تشخیص تصویر با دقت بالا حل شده‌اند. بعضی از مسائل مربوط پیچیده‌تر بودند و محققان با انجام آزمایشات مختلف به این…