هما کاشفی

7-Generative Adversarial Netwrok

مقدمه‌ای بر Generative Adversarial Networks (GANs) یا شبکه‌های مولد تخاصمی

شبکه‌های GAN حوزه‌ای مهیج و به سرعت در حال تغییر هستند که نوید مدل‌های مولد با قابلیت بالا را می‌دهند. برای مثال می‌توانند نمونه‌های واقعی در طیف وسیعی از مسائل تولید کنند، مانند تبدیل تصاویر تابستان به زمستان، تبدیل تصاویر…
EEG .gdf file format

خواندن و پردازش داده ی EEG فرمت .gdf با استفاده از پکیج MNE-Python

فرمت داده‌ی General Data Format (GDF) برای سیگنال‌های پزشکی یک فرمت فایل داده‌ی پزشکی و علمی است. هدف GDF ترکیب و ادغام بهترین ویژگی‌های همه‌ی فرمت‌های فایل بیوسیگنال در یک فرمت فایل واحد است. در این مقاله بررسی می‌کنیم که…
plot_sensors() in MNE-Python

رسم موقعیت مکانی الکترودهای سیگنال EEG با استفاده از پکیج MNE پایتون

در این مقاله توضیح می‌دهیم که چطور می‌توان با استفاده از پکیج MNE پایتون، موقعیت مکانی حسگرها را خواند و رسم کرد و پکیچ MNE چطور موقعیت مکانی حسگرها را تشخیص می‌دهد.
Attention Mechanism in Deep Learning

مکانیزیم Attention در یادگیری عمیق

با پیچیده‌تر شدن مدل‌های یادگیری عمیق، نیاز به روش‌های موثر پردازش میزان زیادی داده، اهمیت فزاینده‌ای پیدا کرده است. یکی از این روش‎ها، مکانیزیم توجه است که به مدل امکانی می‌دهد تا در هنگام پیش بینی بر مرتبط‌ترین اطلاعات، تمرکز…
EEG Frequency Analysis

کار با داده‌های حوزه‌ی فرکانس در پکیج MNE پایتون

در این مقاله یاد می‌گیریم که با استفاده از پکیج MNE پایتون چطور بازنمایی‌های حوزه فرکانس داده‌ی خود را تجسم سازی کنیم و برای این منظور کلاس‌های Spectrum و EpochsSpectrum را معرفی می‌کنیم.

ترنسفورمرها (Transformers) چطور کار می‌کنند؟

ترنسفورمرها نوعی از معماری شبکه عصبی هستند که محبوبیت زیادی پیدا کرده‌اند. ترنسفورما اخیراً توسط OpenAI در مدل‌های زبانی مورد استفاده قرار گرفته‌اند همچنین اخیراً توسط DeepMind برای AlphaStar استفاده شده‌اند. ترنسفورمرها برای حل مسائل انتقال توالی (Sequence Transduction) یا…
ICA_MNEPython

تحلیل سیگنال‌های MEG/EEG با کتابخانه MNE پایتون

در این مقاله به تحلیل سیگنال‌های EEG/MEG با استفاده از پکیج MNE-Python می‌پردازیم. اینکه چطور دیتاست را بخوانیم، ترایال‌ها را جدا کنیم و یا آنها را رسم کنیم. در این مقاله مهم‌ترین ساختار داده‌های پکیج MNE-Python معرفی می‌شوند: Raw, Epochs.
Autoencoder-Architecture

مقدمه ای بر آموزش Autoencoderها

هوش مصنوعی، طیف گسترده‌ای از فناوری‌ها و تکنیک‌ها را در برمی‌گیرد که سیستم‌های کامپیوتری را قادر می‌سازد تا مسائلی مانند فشرده سازی داده‌ها که در بینایی ماشین، شبکه‌های کامپیوتری، معماری کامپیوتر و بسیاری از زمینه های دیگر وجود دارند را…
MNE-Python

نحوه ی نصب و راه اندازی پکیج MNE پایتون

پکیج MNE پایتون، جامع‌ترین پکیج برای خواندن، تحلیل و پردازش و تجسم سازی داده‌های فیزیولوژیکی انسان مانند سیگنال‌های EEG, MEG و ... است. بسیاری از دیتاست‌های مربوط یا الگوریتم‌های موردنیاز برای پردازش داده‌ها در این پکیج از قبل توسعه داده…
MNE

پکیج MNE: پکیج پایتون برای بررسی، تجسم سازی و تحلیل داده‌های فیزیولوژیکی انسان: MEG, EEG, SEEG, ECoG, NIRS

اگر تابحال مقالات مربوط به حوزه ی BCI را مطالعه کرده باشید احتمالاً متوجه شده‌اید که اگر داده‌ها در محیط پایتون پردازش شده باشند به احتمال زیاد از پکیج MNE برای این منظور استفاده شده است. برای پیش پردازش، جداکردن…
EEGNet architecture

EEGNet: یک شبکه عصبی کانولوشنی فشرده برای BCIهای مبتنی بر EEG

در این مقاله، EEGNet را معرفی می‌کنیم که یک شبکه CNN فشرده برای کلاسبندی و تفسیر BCIهای مبتنی بر EEG است. کاربرد کانولوشن‌های Depthwise و Separable که قبلاً در حوزه‌ی بینایی ماشین استفاده می‌شده را برای ساخت یک شبکه خاص…
EEG signal classification using CNN

روش‌های رایج اعمال سیگنال EEG به عنوان ورودی به شبکه‌های عمیق

اخیراً سیگنال‌های EEG توجه فزاینده‌ای را به خود جلب کرده‌اند. کلاسبندی سیگنال‌های EEG به دلیل ماهیت دینامیکی سیگنال، نسبت سیگنال به نویز کم، پیچیدگی و وابستگی به موقعیت سنسور بسیار دشوار است. الگوریتم‌های یادگیری عمیق، افق روشنی را برای کلاسبندی…