هما کاشفی
مقدمهای بر Generative Adversarial Networks (GANs) یا شبکههای مولد تخاصمی
شبکههای GAN حوزهای مهیج و به سرعت در حال تغییر هستند که نوید مدلهای مولد با قابلیت بالا را میدهند. برای مثال میتوانند نمونههای واقعی در طیف وسیعی از مسائل تولید کنند، مانند تبدیل تصاویر تابستان به زمستان، تبدیل تصاویر…
خواندن و پردازش داده ی EEG فرمت .gdf با استفاده از پکیج MNE-Python
فرمت دادهی General Data Format (GDF) برای سیگنالهای پزشکی یک فرمت فایل دادهی پزشکی و علمی است. هدف GDF ترکیب و ادغام بهترین ویژگیهای همهی فرمتهای فایل بیوسیگنال در یک فرمت فایل واحد است. در این مقاله بررسی میکنیم که…
رسم موقعیت مکانی الکترودهای سیگنال EEG با استفاده از پکیج MNE پایتون
در این مقاله توضیح میدهیم که چطور میتوان با استفاده از پکیج MNE پایتون، موقعیت مکانی حسگرها را خواند و رسم کرد و پکیچ MNE چطور موقعیت مکانی حسگرها را تشخیص میدهد.
مکانیزیم Attention در یادگیری عمیق
با پیچیدهتر شدن مدلهای یادگیری عمیق، نیاز به روشهای موثر پردازش میزان زیادی داده، اهمیت فزایندهای پیدا کرده است. یکی از این روشها، مکانیزیم توجه است که به مدل امکانی میدهد تا در هنگام پیش بینی بر مرتبطترین اطلاعات، تمرکز…
کار با دادههای حوزهی فرکانس در پکیج MNE پایتون
در این مقاله یاد میگیریم که با استفاده از پکیج MNE پایتون چطور بازنماییهای حوزه فرکانس دادهی خود را تجسم سازی کنیم و برای این منظور کلاسهای Spectrum و EpochsSpectrum را معرفی میکنیم.
ترنسفورمرها (Transformers) چطور کار میکنند؟
ترنسفورمرها نوعی از معماری شبکه عصبی هستند که محبوبیت زیادی پیدا کردهاند. ترنسفورما اخیراً توسط OpenAI در مدلهای زبانی مورد استفاده قرار گرفتهاند همچنین اخیراً توسط DeepMind برای AlphaStar استفاده شدهاند. ترنسفورمرها برای حل مسائل انتقال توالی (Sequence Transduction) یا…
تحلیل سیگنالهای MEG/EEG با کتابخانه MNE پایتون
در این مقاله به تحلیل سیگنالهای EEG/MEG با استفاده از پکیج MNE-Python میپردازیم. اینکه چطور دیتاست را بخوانیم، ترایالها را جدا کنیم و یا آنها را رسم کنیم. در این مقاله مهمترین ساختار دادههای پکیج MNE-Python معرفی میشوند: Raw, Epochs.
مقدمه ای بر آموزش Autoencoderها
هوش مصنوعی، طیف گستردهای از فناوریها و تکنیکها را در برمیگیرد که سیستمهای کامپیوتری را قادر میسازد تا مسائلی مانند فشرده سازی دادهها که در بینایی ماشین، شبکههای کامپیوتری، معماری کامپیوتر و بسیاری از زمینه های دیگر وجود دارند را…
نحوه ی نصب و راه اندازی پکیج MNE پایتون
پکیج MNE پایتون، جامعترین پکیج برای خواندن، تحلیل و پردازش و تجسم سازی دادههای فیزیولوژیکی انسان مانند سیگنالهای EEG, MEG و ... است. بسیاری از دیتاستهای مربوط یا الگوریتمهای موردنیاز برای پردازش دادهها در این پکیج از قبل توسعه داده…
پکیج MNE: پکیج پایتون برای بررسی، تجسم سازی و تحلیل دادههای فیزیولوژیکی انسان: MEG, EEG, SEEG, ECoG, NIRS
اگر تابحال مقالات مربوط به حوزه ی BCI را مطالعه کرده باشید احتمالاً متوجه شدهاید که اگر دادهها در محیط پایتون پردازش شده باشند به احتمال زیاد از پکیج MNE برای این منظور استفاده شده است. برای پیش پردازش، جداکردن…
EEGNet: یک شبکه عصبی کانولوشنی فشرده برای BCIهای مبتنی بر EEG
در این مقاله، EEGNet را معرفی میکنیم که یک شبکه CNN فشرده برای کلاسبندی و تفسیر BCIهای مبتنی بر EEG است. کاربرد کانولوشنهای Depthwise و Separable که قبلاً در حوزهی بینایی ماشین استفاده میشده را برای ساخت یک شبکه خاص…
روشهای رایج اعمال سیگنال EEG به عنوان ورودی به شبکههای عمیق
اخیراً سیگنالهای EEG توجه فزایندهای را به خود جلب کردهاند. کلاسبندی سیگنالهای EEG به دلیل ماهیت دینامیکی سیگنال، نسبت سیگنال به نویز کم، پیچیدگی و وابستگی به موقعیت سنسور بسیار دشوار است. الگوریتمهای یادگیری عمیق، افق روشنی را برای کلاسبندی…