هما کاشفی

Variational Autoencoder

Variational Autoencoder(VAE) چیست و چه تفاوتی با Autoencoder معمولی دارد؟

در این مقاله می‌خواهیم ساختار Variational autoencoder (VAE) را بررسی کنیم و ببینیم چه تفاوتی با Autoencoder معمولی دارد. مدل های VAE ساده ترین نوع مدل‌های مولد یا Generative modelها هستند که می توانند داده ی جدید تولید کنند.
autoencoder architecture

پیاده سازی یک autoencoder ساده در کراس

می خواهیم به نحوه ی پیاده سازی autoencoderها در کراس نگاهی بیندازیم، معماری شبکه عصبی که سعی می کند بازنمایی فشرده ای از داده ی ورودی به دست دهد.
Open Source Datasets for machine Vision

معرفی چند دیتاست بینایی ماشین

در این مقاله، لیستی جامع از دیتاست‌های با کیفیت بینایی ماشین را ارائه کرده‌ایم که می‌توانید به صورت رایگان به آنها دسترسی داشته باشید.
Adversarial Traning

مفهوم آموزش خصمانه (Adversarial Training)

در بسیاری از مواقع شبکه‌های عصبی که روی دیتاست‌های تست i.i.d ارزیابی می‌شوند، به عملکردی نزدیک به عملکرد انسانی دست پیدا می‌کنند. طبیعی است که تعجب کنیم آیا واقعاً این مدل‌ها، درکی در سطح انسان از تسک‌ها کسب کرده‌اند؟ به…
CHB-MIT dataset

پایگاه داده EEG تشنج صرعی CHB-MIT

یکی از پایگاه داده‌ یا دیتاست‌های مهم EEG صرع تشنجی که در مقالات اخیر از آن استفاده شده است CHB-MIT است که در این مقاله به بررسی آن می‌پردازیم.

Early Stopping در یادگیری ماشین چیست؟

زمانی که مدل‌های یادگیری ماشین را آموزش می‌دهیم ممکن است این مدل‌ها روی داده‌ی آموزش بیش از حد آموزش ببینند و یا به اصطلاح داده‌ی آموزشی را حفظ کنند و بیش برازش (Overfitting) رخ دهد. اغلب در چنین مواقعی می‌بینیم…
Representation Learning

یادگیری بازنمایی یا Representation Learning چیست؟

یادگیری بازنمایی یا Representation Learningروشی برای آموزش یک مدل یادگیری ماشین است تا بتواند مفیدترین بازنمایی داده‌ی ورودی را یاد بگیرد. این بازنمایی‌ها که اغلب به عنوان ویژگی (feature) شناخته می‌شوند، حالت‌های داخلی مدل هستند که می‌توانند داده‌های ورودی را…

تبدیل موجک چیست؟

تبدیل موجک (Wavelet Transform) یک ابزار ریاضیاتی است که یک تابع یا سیگنال را به یک مجموعه توابع پایه به نام موجک، تجزیه می‌کند. تبدیل موجک، ابزار قدرتمندی در پردازش سیگنال EEG است؛ با استفاده از آن می‌توان از سیگنال…

شبکه‌های عمیق در نقش‌های مختلف در تحلیل سیگنال EEG

اگر تابحال مقالات مربوط به کاربرد شبکه‌های عمیق در پردازش انواع مختلف سیگنال EEG را بررسی کرده باشید، احتمالاً متوجه شده‌اید که بسته به کاربرد و عملکرد مناسب مدل، شبکه‌های عمیق در نقش‌های مختلفی ظاهر شده‌اند. برای مثال در برخی…
تشخیص صرع تشنجی با الگوریتمهای یادگیری عمیق

تشخیص تشنج های صرع سیگنال EEG با الگوریتم های یادگیری عمیق

در محیط بالینی، تشخیص خودکار تشنج های صرع اهمیت فزاینده ای پیدا می کند، زیرا می تواند به طور قابل توجهی بار مراقبت از بیماران مبتلا به صرع صعب العلاج را کاهش دهد. سیگنال های الکتروانسفالوگرافی (EEG) فعالیت الکتریکی مغز…
یادگیری عمیق در واسط مغز و کامپیوتر

یادگیری عمیق برای کاربردهای واسط مغز-کامپیوتر مبتنی بر EEG

یادگیری عمیق، چشم اندازهای عالی برای حل تسک‌های پیچیده‌ی مرتبط مانند کلاسبندی تصاویر حرکتی، تشخیص تشنج صرع و تشخیص توجه راننده با استفاده از داده‌ی EEG نشان داده است. محققان در حال حاضر کارهای زیادی روی رویکردهای مبتنی بر یادگیری…
یادگیری عمیق در واسط مغز و کامپیوتر

الگوریتم‌های یادگیری عمیق در پردازش سیگنال EEG

در سال‌های اخیر، الگوریتم‌های یادگیری عمیق به سرعت توسعه یافته‌اند و در حال تبدیل شدن به ابزاری قدرتمند در مهندسی پزشکی هستند. به طور خاص، تمرکز زیادی بر کاربرد الگوریتم‌های یادگیری عمیق در رمزگشایی وضعیت فیزیولوژیکی یا پاتولوژیک مغز از…