یادگیری ماشین
10 IDE برتر برای برنامه نویسی پایتون
IDE که مخفف Integrated Development Environment است یک برنامهی نرم افزاری است که محیطی را برای برنامه نویسان فراهم میکند تا بتوانند کدهای خود را توسعه دهند. اکثر اوقات IDE شامل یک ویرایشگر کد (Code Editor)، ابزارهای خودکارسازی (Automation Tools)…
توضیح رویکرد ماشین بردار پشتیبان به زبان ساده
ماشین بردار پشتیبان(support vector machine) یکی از معروفترین الگوریتمهای یادگیری ماشین در مسائل طبقه بندی و البته رگرسیون هست. SVM به خاطر رویکرد منحصر به فردی که دارد باعث شده هم در مسائل طبقه بندی و هم در مسائل رگرسیون…
4 معیار مناسب برای ارزیابی مدلها در مسائل رگرسیون
رگرسیون یکی از رایجترین مسائل یادگیری ماشین هست که در آن خروجی مقادیر پیوسته و نامحدود هست. همانند مسائل طبقه بندی، در مسائل رگرسیون نیز نیاز به معیارهای ارزیابی هستیم تا بتوانیم عملکرد مدلهای رگرسیون را بررسی کنیم. در این…
تکنیک bagging در یادگیری جمعی
تکنیک بگینگ-bagging که با نام bootstrap aggregating هم شناخته می شود، یک تکنیک یادگیری جمعی هست که برای حداقل کردن واریانس مدل استفاده می شود. در تکنیک bagging برای آموزش هر مدل، یک بخشی از داده به صورت تصادفی انتخاب…
تکنیک آدابوست adaboost
آدابوست یکی از تکنیکهای یادگیری جمعی هست که در آن چندین مدل ضعیف(weak leaner) به صورت سازگار باهم ترکیب می شوند تا بتوانند یک مسئله پیچیده را حل کنند. از تکنیک آدابوست برای کاهش بایاس مدل استفاده میکنند. در این…
انتخاب ویژگی در شناسایی الگو
در شناسایی الگو و یادگیری ماشین، انتخاب ویژگی به فرایندی گفته می شود که در آن بهترین ویژگی ها از بین ویژگیهای استخراج شده انتخاب می شوند. با انتخاب ویژگی تعداد ویژگی ها به طور هدفمند کاهش پیدا میکنند تا…
طبقه بند بیزین
طبقه بند بیزین یک روش آماری قوی هست که از تئوری بیزین برای دسته بندی الگوها استفاده میکند. تئوری بیزین یک روش آماری کمی هست که براساس حداقل کردن هزینههای تصمیم گیریهای مختلف کار میکند. در این مقاله میخواهیم به…
18 سوال مهم شبکه عصبی مصنوعی در مصاحبه
شبکههای عصبی مصنوعی سیستم های محاسباتی هستند که از نحوه کارکرد نورونهای مغز الهام گرفته شده اند. شبکه عصبی اساس یادگیری عمیق است که منجر به دستیابی به نقاط عطف بزرگتر، تقریباً در همه زمینه ها میشود و در نتیجه…
چرا ماشین بردار پشتیبان (SVM) در بین طبقهبندها جزء بهترینا هست؟
ماشین بردار پشتیبان(svm) یکی از معروفترین الگوریتمها در مسائل طبقهبندی هست که برای اولین بار توسط آقای Vladimir Vapnik در سال 1995 با عنوان support vectors networks مطرح شد. SVM در ابتدا برای مسائل طبقهبندی دو کلاسه خطی مطرح شده…
چطور با داده نامتعادل در آموزش مدلهای یادگیری ماشین مقابله کنیم؟
وقتی یک دادهای دارید که تعداد نمونههای گروهها خیلی متفاوت هستند، یا به اصطلاح یک داده نامتعادل دارید، دقت کلاسبندی به تنهایی به هیچ عنوان نمیتواند پارامتر مناسبی برای ارزیابی باشد. در این حالت بهترین کار اینه که سایر پارامترهای…
تفاوت تکنیک یکی در مقابل همه با تکنیک یکی در مقابل یکی
برخی از طبقهبندهای یادگیری ماشین، مثل SVM برای مسائل دو کلاسه طراحی شدهاند و اگر یکی بخواهد از این الگوریتمها در مسائل چند کلاسه استفاده کند، مجبور است که با کمک تـکنیکهایی طبقهبند را برای مسائل چندکلاسه تعمیم دهد. تکنیک…
انتخاب مدل یادگیری ماشین مناسب با کمک تیغ اوکام
احتمالا تا الان براتون پیش اومده که در یک پروژهای از دو مدل یادگیری ماشین استفاده کردهاید و مشاهده کردید هر دو تقریبا مثل هم عمل میکنند و بعد در انتخاب بین دو مدل به مشکل خوردهاید یا براتون سوال…