یادگیری عمیق

شبکه‌های عمیق در نقش‌های مختلف در تحلیل سیگنال EEG

اگر تابحال مقالات مربوط به کاربرد شبکه‌های عمیق در پردازش انواع مختلف سیگنال EEG را بررسی کرده باشید، احتمالاً متوجه شده‌اید که بسته به کاربرد و عملکرد مناسب مدل، شبکه‌های عمیق در نقش‌های مختلفی ظاهر شده‌اند. برای مثال در برخی…
تشخیص صرع تشنجی با الگوریتمهای یادگیری عمیق

تشخیص تشنج های صرع سیگنال EEG با الگوریتم های یادگیری عمیق

در محیط بالینی، تشخیص خودکار تشنج های صرع اهمیت فزاینده ای پیدا می کند، زیرا می تواند به طور قابل توجهی بار مراقبت از بیماران مبتلا به صرع صعب العلاج را کاهش دهد. سیگنال های الکتروانسفالوگرافی (EEG) فعالیت الکتریکی مغز…
تنسورفلو یا پایتورچ، چرا PyTorch برای محققین انتخاب مناسبی است؟

تنسورفلو یا پایتورچ، چرا PyTorch برای محققین انتخاب مناسبی است؟

تنسورفلو یا پایتورچ، مسئله این است! تنسورفلو (TensorFlow) و پایتورچ (PyTorch) دو پلتفرم قدرتمند یادگیری عمیق، به عبارت دو ستون اصلی در زمینه یادگیری عمیق هستند. تنسورفلو توسط گوگل توسعه پیدا کرده و به scalability و سازگاری مشهور است. در…
مطالعه مروری روش‌های بهینه‌سازی مبتنی بر گرادیان نزولی

مطالعه مروری روش‌های بهینه‌سازی مبتنی بر گرادیان نزولی

یادگیری در شبکه‌های عصبی به لطف مشتق و گرادیان نزولی(gradient descent) انجام میشه. در گرادیان نزولی، در هر تکرار آموزش شبکه عصبی شیب خطا محاسبه می‌شود و الگوریتم در جهت کاهش خطا حرکت می‌کند تا به حداقل خطای تصیمیم گیری…
تابع هزینه cross entropy و تفاوت آن با مربعات خطا

تابع هزینه cross entropy و تفاوت آن با مربعات خطا

تابع هزینه یک تابع ریاضیاتی است که عملکرد یک شبکه عصبی را در انجام یک تسک خاص اندازه گیری می‌کند. توابع هزینه نقش اساسی در یادگیری شبکه های عصبی دارند و به شبکه های عصبی کمک می‌کنند در راستای هدف…
Attention Mechanism in Deep Learning

مکانیزیم Attention در یادگیری عمیق

با پیچیده‌تر شدن مدل‌های یادگیری عمیق، نیاز به روش‌های موثر پردازش میزان زیادی داده، اهمیت فزاینده‌ای پیدا کرده است. یکی از این روش‎ها، مکانیزیم توجه است که به مدل امکانی می‌دهد تا در هنگام پیش بینی بر مرتبط‌ترین اطلاعات، تمرکز…
1-Brain Computer Interface

واسط مغز-کامپیوتر و الگوریتم های یادگیری عمیق

در حال حاضر کامپیوترها و مغزها هر روز در آزمایشگاه‌های فناوری پیشرفته با یکدیگر صحبت می‌کنند و هر روز این کار را بهتر و بهتر انجام می‌دهند. برای مثال افراد معلول می‌توانند یاد بگیرند که با قدرت ذهن خود بر…
Deep learning challenges

چالش های آموزش شبکه‌های عمیق و راه حل آنها

یادگیری عمیق و شبکه‌های عصبی از پیشرفته‌ترین و پرکاربردترین فناوری‌های امروزی هستند. علیرغم پیشرفت قابل توجه آنها، هنوز چالش‌های زیادی در یادگیری عمیق وجود دارد که محققان و متخصصان در تلاشند تا بر این چالش‌ها غلبه کنند و مدل‌های بهتری…
یادگیری انتقالی

درک یادگیری انتقالی در یادگیری عمیق

استفاده مجدد از یک مدل از پیش آموخته شده برای یک مسئله‌ی جدید، یادگیری انتقالی نام دارد. مفهوم یادگیری انتقالی به طور خاص در یادگیری عمیق بسیار محبوب است زیرا این قابلیت را دارد که شبکه‌های عصبی عمیق را با…
شروع کار با یادگیری عمیق: 5 موردی که باید حتماً بدانید

شروع کار با یادگیری عمیق: 5 موردی که باید حتماً بدانید

می‌خواهید حرفه‌ی یادگیری عمیق خود را آغاز کنید؟ یادگیری عمیق می‌تواند یک حوزه‌ی پیچیده و دلهره آور برای تازه واردان باشد. مفاهیمی مانند لایه‌های پنهان، شبکه‌های عصبی کانولوشنال، پس انتشار خطا و مسائل جدیدی که هر روزه مطرح می‌شوند و…
AlexNet: معماری که CNNها را به چالش کشید

AlexNet:معماری که CNNها را به چالش کشید

سال‌ها پیش، ما هنوز از دیتاست‌های کوچکی مثل CIFAR, NORB استفاده می‌کردیم که متشکل از ده‌ها هزار تصویر بودند. این دیتاست‌ها برای مدل‌های یادگیری ماشین مناسب بودند تا تسک‌های تشخیص ساده را یاد بگیرند. با این حال، زندگی واقعی هرگز…
هنر و هوش مصنوعی

هنر و هوش مصنوعی

ما به دلایل متعددی به هنر روی می آوریم: برای بیان عاطفه یا احساس، برای یادآوری رویدادها و احساسات گذشته، برای ارتباط برقرار کردن و برای تحصیل. به طور خلاصه، هنر چیزی است که خلق می‌کنیم تا بدانیم چه کسی…