محمد نوری زاده چرلو
محاسبه چگالی طیفی توان PSD طبق روش welch
چگالی طیفی توان (Power spectral density) توزیع توان در بازه های فرکانسی را مشخص میکند و متیوانیم با کمک تبدیل فوریه آنرا محاسبه کنیم. از آنجا که PSD اطلاعات زیادی در مورد پدیدهای که بررسی میکنیم ارائه میدهد در پردازش…
الگوریتم Pan-Tompkins در تشخیص پیکهای R سیگنال ECG
در پردازش سیگنال قلبی (ECG) اولین مرحله آشکارسازی پیکهای R است. از طریق موقعیت پیکهای R کمپلکس QRS، سیگنال RRI (فاصله زمانی بین پیکهای R) و HR استخراج میشود. آشکارسازی درست موقعیت پیکهای R برای تحلیل های بعدی بسیار با…
معرفی تابع dir متلب (خواندن فایلها با اسم های مختلف)
احتمالا شما هم موقع خواندن فایلها با اسمهای مختلف در متلب، مخصوصا اگر اسم فایلها الگوی خاصی نداشته باشند، به مشکل خورده اید. همانند ماژول glob پایتون، متلب تابعی به اسم dir داره که این کار رو براتون راحت میکنه…
نصب تولباکس WFDB فیزیونت در متلب
سایت فیزیونت یک وبسایت پایگاه داده پزشکی است که داده های بسیار معتبری ارائه میدهد. سیگنالهای حیاتی این سایت با فرمتهای مختلفی هستند که برای خواندن آنها در متلب لازمه که از تولباکس خود وبسایت فیزیونت استفاده کنیم. تولباکس WFDB…
معرفی دوره پردازش سیگنال قلبی-ECG
هر سیگنال حیاتی، روشهای پردازش خاص خودش را دارد، سیگنال ECG هم از از این قاعده مستثنی نیست و روشهای پردازش، مخصوصا پیش پردازش و استخراج ویژگی، مختص خودش را دارد. ما در دوره پردازش سیگنال قلبی (ECG) انواع روشهای…
معرفی پایگاه داده MIT-BIH Arrhythmia فیزیونت و نحوه خواندن آن در پایتون
سایت فیزیونت یک منبع پایگاه داده رایگان برای تحقیقات پزشکی هست که توسط آزمایشگاه فیزولوژی محاسباتی MIT مدیریت میشود. پایگاه داده MIT BIH Arrhythmia برای تحقیقات روی بیماریهای آریتمی قلبی ثبت شده است. این پایگاه داده شامل 48 ثبت نیم…
تنسورفلو یا پایتورچ، چرا PyTorch برای محققین انتخاب مناسبی است؟
تنسورفلو یا پایتورچ، مسئله این است! تنسورفلو (TensorFlow) و پایتورچ (PyTorch) دو پلتفرم قدرتمند یادگیری عمیق، به عبارت دو ستون اصلی در زمینه یادگیری عمیق هستند. تنسورفلو توسط گوگل توسعه پیدا کرده و به scalability و سازگاری مشهور است. در…
مطالعه مروری روشهای بهینهسازی مبتنی بر گرادیان نزولی
یادگیری در شبکههای عصبی به لطف مشتق و گرادیان نزولی(gradient descent) انجام میشه. در گرادیان نزولی، در هر تکرار آموزش شبکه عصبی شیب خطا محاسبه میشود و الگوریتم در جهت کاهش خطا حرکت میکند تا به حداقل خطای تصیمیم گیری…
تابع هزینه cross entropy و تفاوت آن با مربعات خطا
تابع هزینه یک تابع ریاضیاتی است که عملکرد یک شبکه عصبی را در انجام یک تسک خاص اندازه گیری میکند. توابع هزینه نقش اساسی در یادگیری شبکه های عصبی دارند و به شبکه های عصبی کمک میکنند در راستای هدف…
شبکه عصبی پرسپترون چند لایه و مسائل غیرخطی
شبکه عصبی پرسپترون چندلایه از سه نوع لایه ورودی، پنهان و خروجی تشکیل شده است. شبکه عصبی MLP از قانون یادگیری پس انتشار خطا برای تنظیم وزنهای سیناپسی خود استفاده میکند. از شبکه عصبی MLP میتوان در مسائل طبقه بندی،…
حالت های ارائه داده آموزشی به شبکه های عصبی (pattern, mini-batch, batch-mode)
در آموزش شبکه های عصبی، داده های آموزش را میتوان به سه شکل pattern mode, batch-mode و mini-batch به شبکه عصبی ارائه داد. هرکدام از این حالتها مزایا و معایب خودشون را دارند. در این پست میخواهیم با هر سه…
پارامترهای ارزیابی در مسائل رگرسیون و طبقه بندی
در طراحی و تعیین پارامترهای یک مدل یادگیری ماشین، روشها و پارامترهای ارزیابی نقش بسیار مهمی دارند. چرا که به ما کمک میکنند دید درستی به مدل طراحی شده داشته باشیم و متوجه بشویم که مدل یادگیری ماشین underfit ،overfit…