هما کاشفی

Representation Learning

یادگیری بازنمایی یا Representation Learning چیست؟

یادگیری بازنمایی یا Representation Learningروشی برای آموزش یک مدل یادگیری ماشین است تا بتواند مفیدترین بازنمایی داده‌ی ورودی را یاد بگیرد. این بازنمایی‌ها که اغلب به عنوان ویژگی (feature) شناخته می‌شوند، حالت‌های داخلی مدل هستند که می‌توانند داده‌های ورودی را…

تبدیل موجک چیست؟

تبدیل موجک (Wavelet Transform) یک ابزار ریاضیاتی است که یک تابع یا سیگنال را به یک مجموعه توابع پایه به نام موجک، تجزیه می‌کند. تبدیل موجک، ابزار قدرتمندی در پردازش سیگنال EEG است؛ با استفاده از آن می‌توان از سیگنال…

شبکه‌های عمیق در نقش‌های مختلف در تحلیل سیگنال EEG

اگر تابحال مقالات مربوط به کاربرد شبکه‌های عمیق در پردازش انواع مختلف سیگنال EEG را بررسی کرده باشید، احتمالاً متوجه شده‌اید که بسته به کاربرد و عملکرد مناسب مدل، شبکه‌های عمیق در نقش‌های مختلفی ظاهر شده‌اند. برای مثال در برخی…
تشخیص صرع تشنجی با الگوریتمهای یادگیری عمیق

تشخیص تشنج های صرع سیگنال EEG با الگوریتم های یادگیری عمیق

در محیط بالینی، تشخیص خودکار تشنج های صرع اهمیت فزاینده ای پیدا می کند، زیرا می تواند به طور قابل توجهی بار مراقبت از بیماران مبتلا به صرع صعب العلاج را کاهش دهد. سیگنال های الکتروانسفالوگرافی (EEG) فعالیت الکتریکی مغز…
یادگیری عمیق در واسط مغز و کامپیوتر

یادگیری عمیق برای کاربردهای واسط مغز-کامپیوتر مبتنی بر EEG

یادگیری عمیق، چشم اندازهای عالی برای حل تسک‌های پیچیده‌ی مرتبط مانند کلاسبندی تصاویر حرکتی، تشخیص تشنج صرع و تشخیص توجه راننده با استفاده از داده‌ی EEG نشان داده است. محققان در حال حاضر کارهای زیادی روی رویکردهای مبتنی بر یادگیری…
یادگیری عمیق در واسط مغز و کامپیوتر

الگوریتم‌های یادگیری عمیق در پردازش سیگنال EEG

در سال‌های اخیر، الگوریتم‌های یادگیری عمیق به سرعت توسعه یافته‌اند و در حال تبدیل شدن به ابزاری قدرتمند در مهندسی پزشکی هستند. به طور خاص، تمرکز زیادی بر کاربرد الگوریتم‌های یادگیری عمیق در رمزگشایی وضعیت فیزیولوژیکی یا پاتولوژیک مغز از…
ICA_MNE

تعریف ICA و نحوه ی اعمال آن در پکیج MNE-Python

روش تحلیل مولفه‌های مستقل (Independent Components Analysis (ICA)) تکنیکی برای برآورد سیگنال‌های منابع مستقل از مجموعه‌ای از ضبط‌هاست که در آن سیگنال‌های منبع در نسبت‌های ناشناخته با هم ترکیب شده‌اند. در این مقاله با ICA آشنا می شویم و اینکه…
1.necessary libraries for mne

کتابخانه‌های ضروری مکمل کار با پکیج MNE پایتون

به منظور کار با پکیج MNE پایتون، شناخت و یادگیری چند مورد از کتابخانه‌های پایتون ضروری است. این کتابخانه در خواندن دیتاست‌هایی مثل EEG، ذخیره سازی و جداسازی و تقسیم دیتاست به بخش‌های آموزش و آزمایش و همچنین استفاده از…
mne.Annotations

حاشیه‌نویسی سیگنال پیوسته با استفاده از پکیج MNE پایتون

با استفاده از پکیج MNE پایتون می‌توانیم سیگنال پیوسته را نشانه‌گذاری یا به اصطلاح حاشیه‌نویسی کنیم و همچنین از این حاشیه‌نویسی‌ها در مراحل بعدی پردازش استفاده کنیم. در این مقاله، روند انجام آن را توضیح می‌دهیم.
7-Generative Adversarial Netwrok

مقدمه‌ای بر Generative Adversarial Networks (GANs) یا شبکه‌های مولد تخاصمی

شبکه‌های GAN حوزه‌ای مهیج و به سرعت در حال تغییر هستند که نوید مدل‌های مولد با قابلیت بالا را می‌دهند. برای مثال می‌توانند نمونه‌های واقعی در طیف وسیعی از مسائل تولید کنند، مانند تبدیل تصاویر تابستان به زمستان، تبدیل تصاویر…
EEG .gdf file format

خواندن و پردازش داده ی EEG فرمت .gdf با استفاده از پکیج MNE-Python

فرمت داده‌ی General Data Format (GDF) برای سیگنال‌های پزشکی یک فرمت فایل داده‌ی پزشکی و علمی است. هدف GDF ترکیب و ادغام بهترین ویژگی‌های همه‌ی فرمت‌های فایل بیوسیگنال در یک فرمت فایل واحد است. در این مقاله بررسی می‌کنیم که…
plot_sensors() in MNE-Python

رسم موقعیت مکانی الکترودهای سیگنال EEG با استفاده از پکیج MNE پایتون

در این مقاله توضیح می‌دهیم که چطور می‌توان با استفاده از پکیج MNE پایتون، موقعیت مکانی حسگرها را خواند و رسم کرد و پکیچ MNE چطور موقعیت مکانی حسگرها را تشخیص می‌دهد.