EEG

تولباکس SSVEP-پیاده سازی تمام روشهای تشخیص فرکانس SSVEP

تولباکس SSVEP-پیاده سازی تمام روشهای تشخیص فرکانس SSVEP

واسط مغز-کامپیوتر مبتنی بر SSVEP یکی از پارادایمهای معروف این حوزه هست که به خاطر داشتن نسبت سیگنال به نویز بالا، داشتن ITR نسبتا بالا و زمان آموزش کم کاربر نسبت به سایر پارادایمها، در بین محققین محبوبیت زیادی دارند.…
good resources to learn EEG signal processing

چند منبع خوب برای یادگیری پردازش سیگنال مغزی EEG

برای پردازش سیگنال های مغزی (EEG) داشتن دانش پایه بسیار میتواند کمک کننده باشد. آشنا بودن با مباحثی مانند ساختار مغز، فرایند تولید امواج مغزی، نحوه ثبت سیگنال EEG، انواع نویزها در سیگنالهای مغزی و نحوه حذف آنها و روشهای…
CHB-MIT dataset

پایگاه داده EEG تشنج صرعی CHB-MIT

یکی از پایگاه داده‌ یا دیتاست‌های مهم EEG صرع تشنجی که در مقالات اخیر از آن استفاده شده است CHB-MIT است که در این مقاله به بررسی آن می‌پردازیم.

شبکه‌های عمیق در نقش‌های مختلف در تحلیل سیگنال EEG

اگر تابحال مقالات مربوط به کاربرد شبکه‌های عمیق در پردازش انواع مختلف سیگنال EEG را بررسی کرده باشید، احتمالاً متوجه شده‌اید که بسته به کاربرد و عملکرد مناسب مدل، شبکه‌های عمیق در نقش‌های مختلفی ظاهر شده‌اند. برای مثال در برخی…
تشخیص صرع تشنجی با الگوریتمهای یادگیری عمیق

تشخیص تشنج های صرع سیگنال EEG با الگوریتم های یادگیری عمیق

در محیط بالینی، تشخیص خودکار تشنج های صرع اهمیت فزاینده ای پیدا می کند، زیرا می تواند به طور قابل توجهی بار مراقبت از بیماران مبتلا به صرع صعب العلاج را کاهش دهد. سیگنال های الکتروانسفالوگرافی (EEG) فعالیت الکتریکی مغز…
یادگیری عمیق در واسط مغز و کامپیوتر

یادگیری عمیق برای کاربردهای واسط مغز-کامپیوتر مبتنی بر EEG

یادگیری عمیق، چشم اندازهای عالی برای حل تسک‌های پیچیده‌ی مرتبط مانند کلاسبندی تصاویر حرکتی، تشخیص تشنج صرع و تشخیص توجه راننده با استفاده از داده‌ی EEG نشان داده است. محققان در حال حاضر کارهای زیادی روی رویکردهای مبتنی بر یادگیری…
یادگیری عمیق در واسط مغز و کامپیوتر

الگوریتم‌های یادگیری عمیق در پردازش سیگنال EEG

در سال‌های اخیر، الگوریتم‌های یادگیری عمیق به سرعت توسعه یافته‌اند و در حال تبدیل شدن به ابزاری قدرتمند در مهندسی پزشکی هستند. به طور خاص، تمرکز زیادی بر کاربرد الگوریتم‌های یادگیری عمیق در رمزگشایی وضعیت فیزیولوژیکی یا پاتولوژیک مغز از…
plot_sensors() in MNE-Python

رسم موقعیت مکانی الکترودهای سیگنال EEG با استفاده از پکیج MNE پایتون

در این مقاله توضیح می‌دهیم که چطور می‌توان با استفاده از پکیج MNE پایتون، موقعیت مکانی حسگرها را خواند و رسم کرد و پکیچ MNE چطور موقعیت مکانی حسگرها را تشخیص می‌دهد.
MNE-Python

نحوه ی نصب و راه اندازی پکیج MNE پایتون

پکیج MNE پایتون، جامع‌ترین پکیج برای خواندن، تحلیل و پردازش و تجسم سازی داده‌های فیزیولوژیکی انسان مانند سیگنال‌های EEG, MEG و ... است. بسیاری از دیتاست‌های مربوط یا الگوریتم‌های موردنیاز برای پردازش داده‌ها در این پکیج از قبل توسعه داده…
MNE

پکیج MNE: پکیج پایتون برای بررسی، تجسم سازی و تحلیل داده‌های فیزیولوژیکی انسان: MEG, EEG, SEEG, ECoG, NIRS

اگر تابحال مقالات مربوط به حوزه ی BCI را مطالعه کرده باشید احتمالاً متوجه شده‌اید که اگر داده‌ها در محیط پایتون پردازش شده باشند به احتمال زیاد از پکیج MNE برای این منظور استفاده شده است. برای پیش پردازش، جداکردن…
EEGNet architecture

EEGNet: یک شبکه عصبی کانولوشنی فشرده برای BCIهای مبتنی بر EEG

در این مقاله، EEGNet را معرفی می‌کنیم که یک شبکه CNN فشرده برای کلاسبندی و تفسیر BCIهای مبتنی بر EEG است. کاربرد کانولوشن‌های Depthwise و Separable که قبلاً در حوزه‌ی بینایی ماشین استفاده می‌شده را برای ساخت یک شبکه خاص…
EEG signal classification using CNN

روش‌های رایج اعمال سیگنال EEG به عنوان ورودی به شبکه‌های عمیق

اخیراً سیگنال‌های EEG توجه فزاینده‌ای را به خود جلب کرده‌اند. کلاسبندی سیگنال‌های EEG به دلیل ماهیت دینامیکی سیگنال، نسبت سیگنال به نویز کم، پیچیدگی و وابستگی به موقعیت سنسور بسیار دشوار است. الگوریتم‌های یادگیری عمیق، افق روشنی را برای کلاسبندی…