تعیین نرخ یادگیری پس انتشار خطا (جلسه پنجم)


در این جلسه چالش‌های تعیین نرخ یادگیری را توضیح می‌دهیم و در ادامه چند روش ساده از قبیل ترم ممنتوم، search then converge و time variant  را برای تعیین نرخ یادگیری طبق مطالب کتاب ارائه می‌دهیم و در متلب پیاده‌سازی می‌کنیم و مزایا و معایب هر روش را توضیح می‌دهیم و در انتها توضیح می‌دهیم که روشهای ذکر شده با اینکه تا حدودی توانسته‌اند مشکل تعیین نرخ یادگیری را حل کنند ولی کافی نیستند و نیاز است که شرطهای دیگری نیز در تعیین نرخ یادگیری گنجانده شود.

نحوه تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا

در جلسه چهارم تئوری الگوریتم معروف پس انتشار خطا را آموزش داده در متلب به صورت مرحله به مرحله پیاده‌سازی کرده و چندین پروژه عملی از جلمه تشخیص سرطان سینه (پروژه عملی طبقه‌بندی) و پیش بینی میزان آلودگی هوا (پروژه عملی رگرسیون) با استفاده از شبکه عصبی پرسپترون چندلایه به صورت گام به گام در متلب پیاده‌سازی کردیم. الگوریتم پس انتشار خطا همانند LMS از گرادیان نزولی برای تنظیم وزنهای سیناپسی استفاده می‌کند. الگوریتم گرادیان نزولی در جهت شیب منفی خطا با یک گامی(نرخ یادگیری) حرکت می‌کند تا به مقدار بهینه برسد. مقدار بهینه جایی است که شیب خطا صفر شود. در حالت ایده آل با تعیین یک نرخ یادگیری مناسب می‌توان به خطای حداقل رسید. ولی در پروژه‌های عملی تعیین نرخ یادگیری بسیار سخت و چالش برانگیز است، زیرا که اگه نرخ یادگیری کم انتخاب شود، الگوریتم ممکن است در مینیمم‌های محلی گیر کند (زیرا که مینیمم محلی خواصی شبیه به مینیمم اصلی دارند و در این مناطق نیز شیب خطا صفر است و الگوریتم به اشتباه فکر می‌کند که به مقدار بهینه رسیده است) و در نتیجه شبکه به درستی آموزش نمی‌بیند و یا اگر نرخ یادگیری بزرگ انتخاب شود امکان دارد شبکه به حالت نوسانی و ناپایدار برسد و در نتیجه همگرا نشده و آموزش نبیند. در این جلسه چالش‌های تعیین نرخ یادگیری را توضیح می‌دهیم و در ادامه چند روش ساده از قبیل ترم ممنتوم، search then converge و time variant  را برای حل این مسئله طبق مطالب کتاب ارائه می‌دهیم و در متلب پیاده‌سازی می‌کنیم و مزایا و معایب هر روش را توضیح می‌دهیم و در انتها توضیح می‌دهیم که روشهای ذکر شده با اینکه تا حدودی توانسته‌اند مشکل تعیین نرخ یادگیری را حل کنند ولی کافی نیستند و نیاز است که شرطهای دیگری نیز در تعیین نرخ یادگیری گنجانده شود.

برای درک بهتر مطالب ما در این جلسه نیز چندین مثال و پروژه عملی در متلب انجام داده‌ایم.

نکته: بخشی از مباحث این جلسه طبق مطالب فصل کتاب Simon haykin است.

  درصورتی که با خرید محصول مشکل داشتید با شماره‌ی 2687 – 038 -0936 تماس بگیرید.
.فقط مشتریانی که این محصول را خریداری کرده اند و وارد سیستم شده اند میتوانند برای این محصول دیدگاه ارسال کنند.