اخبار علمی

انواع واسط مغز-کامپیوتر (Motor Imagery، P300 و SSVEP)

انواع واسط مغز-کامپیوتر (Motor Imagery, P300, SSVEP)

واسط‌های مغز-کامپیوتر عمدتا براساس سه نوع فعالیت مغزی ثبت شده توسط EEG طراحی و توسعه می یابند: BCI مبتنی بر تصور حرکتی، BCI مبتنی بر پتانسیل وابسته به رخداد P300 و BCI مبتنی بر SSVEP. در این پست میخواهیم سه…
نحوه نصب EEGLAB در متلب

نحوه نصب تولباکس EEGLAB

در پست های قبل در مورد تولباکس EEGLAB توضیحاتی ارائه شد. گفتیم EEGLAB تولباکسی است که برای اهداف تصویربرداری عصبی نوشته و طراحی شده است؛ بنابراین بطور اختصاصی بیشتر برای پردازش سیگنال های مغزی به کار می رود. همچنین بهترین…
مفهوم کانولوشن در cnn

مفهوم کانولوشن در CNN

اگر بخواهیم تفاوت اصلی لایه‌های کانولوشن را با لایه‌های معمول شبکه‌های عصبی بیان کنیم، می‌توانیم بگوییم لایه‌های Dense الگوهای global را در فضای ویژگی ورودی خود یاد می‌گیرند در حالیکه لایه‌های کانولوشن الگوهای local را یاد می‌گیرند. برای مثال یک…
EEGLAB چیست

EEGLAB چیست؟

هرکسی که علاقه مند به پردازش سیگنال های حیاتی از جمله سیگنال های EEG   باشد، به احتمال زیاد نام EEGLAB را شنیده است. از حدود  17 سال گذشته تا کنون، EEGLAB (Delorme & Makeig,2004)، با مشارکت ده‌ها برنامه‌نویس، نویسندگان افزونه و…
درک شبکه‌های عصبی بازگشتی و LSTM

درک شبکه‌های عصبی بازگشتی و LSTM

اگر تابحال از Apple’s Siri و Google voice search یا Google Translate استفاده کرده‌اید، باید بدانید که این اپلیکیشن‌ها از شبکه‌های عصبی بازگشتی (RNN) استفاده می‌کنند که جدیدترین الگوریتم‌ها برای داده‌های توالی هستند. RNN اولین الگوریتمی است که به دلیل…
تکنیکهای آموزش شبکه های عصبی بزرگ

تکنیکهای آموزش شبکه های عصبی بزرگ

ممکن است شبکه‌های عصبی عظیم، گزینه‌ی مناسبی برای پروژه‌ی شما باشند اما نگران روند آموزش آنها باشید. شبکه‌های عصبی بزرگ، مرکز اصلی پیشرفت‌های اخیر در هوش مصنوعی هستند، اما آموزش این شبکه‌ها چالش پژوهشی و مهندسی دشواری است که مستلزم…
چگونه بهترین موجک مادر را انتخاب کنیم؟

چگونه بهترین موجک مادر را انتخاب کنیم؟

در چند دهه ی اخیر، استفاده از ابزار ریاضی قدرتمندی به نام تبدیل ویولت با کاربردهای متنوع در میان پژوهشگران رایج شده است. این کاربردها می تواند در رشته ها و علوم مختلف مطرح گردد. برای مثال در مهندسی پزشکی…
5 روش برای جلوگیری از بیش‌برازش شبکه عصبی

5 روش برای جلوگیری از بیش‌برازش شبکه عصبی

در پیاده سازی شبکه هایی عصبی، عمده ترین مشکلی که باهاش مواجه می شویم overfitting  یا همان بیش برازش مدل هست. در این پست میخواهیم در مورد بیش‌برازش و روش‌هایی جلوگیری از آن در شبکه عصبی صحبت کنیم.
مطالعات فرسایشی یاAblation studies در هوش مصنوعی

مطالعات فرسایشی یا Ablation studies در هوش مصنوعی

مطالعات فرسایشی به طور سیستماتیکی سعی می‌کنند که بخش‌هایی از یک سیستم را حذف کنند، تا شناسایی کنند که عملکرد اصلی مدل دقیقاً از کجا می‌آید. اگر شما بدانید که X+Y+Z نتایج خوبی می‌دهد، X, Y, Z, X+Y, X+Z و…
روش های تشخیص داده های پرت Outliers

روش‌های تشخیص داده‌های پرت – Outliers

داده های پرت یا Outlier ها می توانند درکی از داده های مورد مطالعه به ما بدهند و بر نتایج آماری تاثیر بگذارند. شناسایی آن ها به ما کمک می کند تا ناهماهنگی را پیدا کنیم و هرگونه خطا در…
داستان کشف واحد اصلی سیستم عصبی توسط پدر نوروساینس مدرن

داستان کشف واحد اصلی سیستم عصبی توسط پدر نوروساینس مدرن(بخش دوم)

در قسمت اول این داستان با کژال، بنیانگذار علوم اعصاب مدرن و برنده ی جایزه نوبل در سال 1906 آشنا شدیم و تصاویری از طرح هایی از نورون ها حاصل از ذوق هنری و تحقیقات علمی وی را دیدیم. در…
تحلیل سه مدل شبکه عصبی در یادگیری عمیق: ANN، CNN و RNN

تحلیل سه مدل شبکه عصبی در یادگیری عمیق: ANN، CNN و RNN

شبکه‌های عصبی چه قابلیت‌هایی دارند که الگوریتم‌های یادگیری ماشین فاقد آنها هستند؟ از طرف دیگر، با وجود آنکه شبکه‌های عصبی به حجم زیادی داده نیاز دارند، آیا استفاده از این شبکه‌ها، ارزشش را دارد؟! در این پست، سه مدل شبکه…