MEG

mne.Annotations

حاشیه‌نویسی سیگنال پیوسته با استفاده از پکیج MNE پایتون

با استفاده از پکیج MNE پایتون می‌توانیم سیگنال پیوسته را نشانه‌گذاری یا به اصطلاح حاشیه‌نویسی کنیم و همچنین از این حاشیه‌نویسی‌ها در مراحل بعدی پردازش استفاده کنیم. در این مقاله، روند انجام آن را توضیح می‌دهیم.
plot_sensors() in MNE-Python

رسم موقعیت مکانی الکترودهای سیگنال EEG با استفاده از پکیج MNE پایتون

در این مقاله توضیح می‌دهیم که چطور می‌توان با استفاده از پکیج MNE پایتون، موقعیت مکانی حسگرها را خواند و رسم کرد و پکیچ MNE چطور موقعیت مکانی حسگرها را تشخیص می‌دهد.
MNE-Python

نحوه ی نصب و راه اندازی پکیج MNE پایتون

پکیج MNE پایتون، جامع‌ترین پکیج برای خواندن، تحلیل و پردازش و تجسم سازی داده‌های فیزیولوژیکی انسان مانند سیگنال‌های EEG, MEG و ... است. بسیاری از دیتاست‌های مربوط یا الگوریتم‌های موردنیاز برای پردازش داده‌ها در این پکیج از قبل توسعه داده…
MNE

پکیج MNE: پکیج پایتون برای بررسی، تجسم سازی و تحلیل داده‌های فیزیولوژیکی انسان: MEG, EEG, SEEG, ECoG, NIRS

اگر تابحال مقالات مربوط به حوزه ی BCI را مطالعه کرده باشید احتمالاً متوجه شده‌اید که اگر داده‌ها در محیط پایتون پردازش شده باشند به احتمال زیاد از پکیج MNE برای این منظور استفاده شده است. برای پیش پردازش، جداکردن…
Human Connectome Project

Human Connectome Project (HCP) چیست؟

این پروژه، دیتاست‌هایی در رابطه با ساختار، عملکرد و اتصالات مغز بیش از 1000 فرد مورد مطالعه سالم را در اختیار قرار می‌دهد. پروژه HCP برای اکتساب داده از اسکنرهای بهبود یافته، توالی پالس برای تصاویر با کیفیت بالا استفاده…