پایتورچ
تنسورفلو یا پایتورچ، چرا PyTorch برای محققین انتخاب مناسبی است؟
تنسورفلو یا پایتورچ، مسئله این است! تنسورفلو (TensorFlow) و پایتورچ (PyTorch) دو پلتفرم قدرتمند یادگیری عمیق، به عبارت دو ستون اصلی در زمینه یادگیری عمیق هستند. تنسورفلو توسط گوگل توسعه پیدا کرده و به scalability و سازگاری مشهور است. در…
مطالعه مروری روشهای بهینهسازی مبتنی بر گرادیان نزولی
یادگیری در شبکههای عصبی به لطف مشتق و گرادیان نزولی(gradient descent) انجام میشه. در گرادیان نزولی، در هر تکرار آموزش شبکه عصبی شیب خطا محاسبه میشود و الگوریتم در جهت کاهش خطا حرکت میکند تا به حداقل خطای تصیمیم گیری…
تابع هزینه cross entropy و تفاوت آن با مربعات خطا
تابع هزینه یک تابع ریاضیاتی است که عملکرد یک شبکه عصبی را در انجام یک تسک خاص اندازه گیری میکند. توابع هزینه نقش اساسی در یادگیری شبکه های عصبی دارند و به شبکه های عصبی کمک میکنند در راستای هدف…
شبکه عصبی پرسپترون چند لایه و مسائل غیرخطی
شبکه عصبی پرسپترون چندلایه از سه نوع لایه ورودی، پنهان و خروجی تشکیل شده است. شبکه عصبی MLP از قانون یادگیری پس انتشار خطا برای تنظیم وزنهای سیناپسی خود استفاده میکند. از شبکه عصبی MLP میتوان در مسائل طبقه بندی،…
گرادیان نزولی و نقش آن در فرایند یادگیری شبکه های عصبی
گرادیان نزولی (gradient descent) یک الگوریتم بهینه سازی است که در شبکه های عصبی با کمک آن وزنهای سیناپسی تنظیم می شوند. به عبارتی با کمک گرادیان نزولی، شبکه های عصبی آموزش دیده و دانش لازم برای حل مئسله را…
ساخت dataloader سفارشی با کمک DataLoader و Dataset پایتورچ
در پروژه های یادگیری ماشین، مخصوصا یادگیری عمیق، ما با حجم بسیار بالای داده (big data) روبرو هستیم. و هندل کردن چنین داده ای جهت آموزش یک شبکه عصبی میتواند بسیار سخت و پیچیده باشد. از طرفی کدهای مربوط به…
کتابخانه پایتورچ (PyTorch)
پایتورچ یک فریم ورک یادگیری ماشین مبتنی بر کتابخانه Torch است. یک کتابخانه قدرتمند پایتون برای کاربردهایی مثل بینایی ماشین و پردازش زبان طبیعی است که اولین بار توسط تیم هوش مصنوعی متا (فیسبوک) توسعه پیدا کرد و در سال…