نتایج جستجو
شبکههای عمیق در نقشهای مختلف در تحلیل سیگنال EEG
اگر تابحال مقالات مربوط به کاربرد شبکههای عمیق در پردازش انواع مختلف سیگنال EEG را بررسی کرده باشید، احتمالاً متوجه شدهاید که بسته به کاربرد و عملکرد مناسب مدل، شبکههای عمیق در نقشهای مختلفی ظاهر شدهاند. برای مثال در برخی…
معرفی تابع dir متلب (خواندن فایلها با اسم های مختلف)
احتمالا شما هم موقع خواندن فایلها با اسمهای مختلف در متلب، مخصوصا اگر اسم فایلها الگوی خاصی نداشته باشند، به مشکل خورده اید. همانند ماژول glob پایتون، متلب تابعی به اسم dir داره که این کار رو براتون راحت میکنه…
تشخیص تشنج های صرع سیگنال EEG با الگوریتم های یادگیری عمیق
در محیط بالینی، تشخیص خودکار تشنج های صرع اهمیت فزاینده ای پیدا می کند، زیرا می تواند به طور قابل توجهی بار مراقبت از بیماران مبتلا به صرع صعب العلاج را کاهش دهد. سیگنال های الکتروانسفالوگرافی (EEG) فعالیت الکتریکی مغز…
نصب تولباکس WFDB فیزیونت در متلب
سایت فیزیونت یک وبسایت پایگاه داده پزشکی است که داده های بسیار معتبری ارائه میدهد. سیگنالهای حیاتی این سایت با فرمتهای مختلفی هستند که برای خواندن آنها در متلب لازمه که از تولباکس خود وبسایت فیزیونت استفاده کنیم. تولباکس WFDB…
پردازش سیگنال مغزی با کتابخانه MNE پایتون
برای پردازش و کار با سیگنال EEG (سیگنال مغزی الکتروانسفالوگرافی) در محیط برنامهنویسی پایتون، راههای مختلفی پیش روی شماست. میتوانید مراحل پردازش را خودتان با توابع و کتابخانههای موجود انجام دهید. علاوه بر اینها پایتون، پکیجهایی برای پردازش و کار…
یادگیری عمیق برای کاربردهای واسط مغز-کامپیوتر مبتنی بر EEG
یادگیری عمیق، چشم اندازهای عالی برای حل تسکهای پیچیدهی مرتبط مانند کلاسبندی تصاویر حرکتی، تشخیص تشنج صرع و تشخیص توجه راننده با استفاده از دادهی EEG نشان داده است. محققان در حال حاضر کارهای زیادی روی رویکردهای مبتنی بر یادگیری…
معرفی دوره پردازش سیگنال قلبی-ECG
هر سیگنال حیاتی، روشهای پردازش خاص خودش را دارد، سیگنال ECG هم از از این قاعده مستثنی نیست و روشهای پردازش، مخصوصا پیش پردازش و استخراج ویژگی، مختص خودش را دارد. ما در دوره پردازش سیگنال قلبی (ECG) انواع روشهای…
الگوریتمهای یادگیری عمیق در پردازش سیگنال EEG
در سالهای اخیر، الگوریتمهای یادگیری عمیق به سرعت توسعه یافتهاند و در حال تبدیل شدن به ابزاری قدرتمند در مهندسی پزشکی هستند. به طور خاص، تمرکز زیادی بر کاربرد الگوریتمهای یادگیری عمیق در رمزگشایی وضعیت فیزیولوژیکی یا پاتولوژیک مغز از…
معرفی پایگاه داده MIT-BIH Arrhythmia فیزیونت و نحوه خواندن آن در پایتون
سایت فیزیونت یک منبع پایگاه داده رایگان برای تحقیقات پزشکی هست که توسط آزمایشگاه فیزولوژی محاسباتی MIT مدیریت میشود. پایگاه داده MIT BIH Arrhythmia برای تحقیقات روی بیماریهای آریتمی قلبی ثبت شده است. این پایگاه داده شامل 48 ثبت نیم…
تنسورفلو یا پایتورچ، چرا PyTorch برای محققین انتخاب مناسبی است؟
تنسورفلو یا پایتورچ، مسئله این است! تنسورفلو (TensorFlow) و پایتورچ (PyTorch) دو پلتفرم قدرتمند یادگیری عمیق، به عبارت دو ستون اصلی در زمینه یادگیری عمیق هستند. تنسورفلو توسط گوگل توسعه پیدا کرده و به scalability و سازگاری مشهور است. در…
مطالعه مروری روشهای بهینهسازی مبتنی بر گرادیان نزولی
یادگیری در شبکههای عصبی به لطف مشتق و گرادیان نزولی(gradient descent) انجام میشه. در گرادیان نزولی، در هر تکرار آموزش شبکه عصبی شیب خطا محاسبه میشود و الگوریتم در جهت کاهش خطا حرکت میکند تا به حداقل خطای تصیمیم گیری…
تعریف ICA و نحوه ی اعمال آن در پکیج MNE-Python
روش تحلیل مولفههای مستقل (Independent Components Analysis (ICA)) تکنیکی برای برآورد سیگنالهای منابع مستقل از مجموعهای از ضبطهاست که در آن سیگنالهای منبع در نسبتهای ناشناخته با هم ترکیب شدهاند. در این مقاله با ICA آشنا می شویم و اینکه…